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Abstract. The influence of long-term processes in the climate system, such as land ice changes, has to be compensated for

when comparing climate sensitivity derived from paleodata with equilibrium climate sensitivity (ECS) calculated by climate

models, which is only generated by a CO2 change. Several recent studies found that the impact these long-term processes

have on global temperature cannot be quantified directly through the global radiative forcing they induce. This renders the

approach of deconvoluting paleotemperatures through a partitioning based on radiative forcings inaccurate. Here, we therefore5

implement an efficacy factor ε[LI], that relates the impact of land ice changes on global temperature to that of CO2 changes, in

our calculation of climate sensitivity from paleodata. We apply our new approach to a proxy-inferred paleoclimate dataset, and

find an equivalent ECS of 5.6± 1.3K per CO2 doubling. The substantial uncertainty herein is generated by the range in ε[LI]

we use, which is based on a multi-model assemblage of simulated relative influences of land ice changes on the Last Glacial

Maximum (LGM) temperature anomaly (46± 14%). The low end of our ECS estimate, which concurs with estimates from10

other approaches, tallies with a large influence for land ice changes. To separately assess this influence, we analyse output of

the PMIP3 climate model intercomparison project. From this data, we infer a functional intermodel relation between global and

high-latitude temperature changes at the LGM with respect to the pre-industrial climate, and the temperature anomaly caused

by a CO2 change. Applying this relation to our dataset, we find a considerable 64% influence for land ice changes on the

LGM temperature anomaly. This is even higher than the range used before, and leads to an equivalent ECS of 3.8 K per CO215

doubling. Together, our results suggest that land ice changes play a key role in the variability of Late Pleistocene temperatures.
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1 Introduction

Equilibrium climate sensitivity (ECS) expresses the simulated equilibrated surface air temperature response to an instanta-

neous CO2 doubling. The simulated effect of the applied CO2 radiative forcing anomaly includes the Planck response, as well

as the fast feedbacks e.g. through snow, sea ice, lapse rate, clouds and water vapour changes. ECS varies significantly between

different state-of-the-art climate models, as for instance the CMIP5 ensemble shows a range of 1.9 to 4.4 K (Vial et al., 2013).5

Several ways have been put forward to constrain ECS, for example through the usage of paleoclimate data (e.g. Covey et al.,

1996; Edwards et al., 2007), which is also the focus of this study. However, unlike results of models, which can be run ceteris

paribus, temperature reconstructions based on paleoclimate proxy data always contain a mixed signal of all processes active

in the climate system. Among these are long-term processes (or slow feedbacks) such as changes in vegetation, dust, and,

arguably most importantly, land ice changes, which are not taken into account in the quantification of ECS. Therefore, it is10

necessary to correct paleotemperature records for the influence of these processes, in order to make a meaningful comparison

to ECS calculated by climate models.

In a co-ordinated community effort, the PALAEOSENS project proposed to relate the temperature response caused by these

long-term processes to the global averaged radiative forcing they induce (PALAEOSENS Project Members, 2012). Conse-

quently, the paleotemperature record can be disentangled on the basis of the separate radiative forcings of these long-term15

processes (e.g. von der Heydt et al., 2014; Martínez-Botí et al., 2015; Köhler et al., 2015, 2017b, 2018; Friedrich et al., 2016).

If all processes are accounted for in this manner, the sole effect of CO2 changes, as is asserted by the ECS, can be quantified.

However, several studies have shown that, depending on the type of radiative forcing, the same global average radiative forcing

can lead to different global temperature changes (e.g. Stuber et al., 2005; Hansen et al., 2005; Yoshimori et al., 2011). For

instance, in a previous article (Stap et al., 2018) we simulated the separate and combined effects of CO2 changes and land20

ice changes on global surface air temperature using the intermediate complexity climate model CLIMBER-2 and showed that

the specific global temperature change per unit radiative forcing change depends on which process is involved. As a possible

solution to this problem, Hansen et al. (2005) formulated the concept of ’efficacy’ factors, which express the impact of radiative

forcing by a certain process in comparison to the effect of radiative forcing by CO2 changes.

In this study, we use this concept of efficacy from Hansen et al. (2005) to refine a previous estimate of climate sensitivity25

based on a paleoclimate dataset of the past 800 kyr (Köhler et al., 2015, 2018). Before pursuing this, we demonstrate the in-

clusion of a constant efficacy factor for radiative forcing by albedo changes due to land ice variability on transient simulations

over the past 5 Myr using CLIMBER-2. In the results of these simulations, the separate and combined effects of the greenhouse

gas radiative forcing of CO2 and of the radiative forcing caused by land ice changes are obtained from different model setups

(Stap et al., 2018). In the analysis of the paleoclimate dataset of Köhler et al. (2015), we appraise the influence of land ice30

changes and the associated efficacy in two manners, because here it is not a-priori known. Firstly, we use a range that is given

by different modelling efforts of the Last Glacial Maximum (LGM; ∼20 kyr ago) (Shakun, 2017). The climate sensitivity

resulting from applying this range provides a quantification of the consequence of the uncertain efficacy of land ice changes.
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Secondly, we analyse data from the PMIP3 climate model intercomparison LGM experiment (Braconnot et al., 2012) to find a

separate estimate of this efficacy in our dataset, along with the accessory climate sensitivity.

2 Material and methods

2.1 Approach

Equilibrium climate sensitivity (ECS) is the global average surface air temperature change resulting from a CO2 doubling5

(∆T[CO2]), and is usually obtained from climate model simulations. In these simulations, fast feedbacks, i.e. processes in

the climate system with timescales of less than ∼100 yrs, are accounted for. However, slower processes, such as ice sheet,

vegetation and dust changes, are commonly kept constant. The resulting response is also sometimes called ‘Charney‘ sensitivity

(Charney et al., 1979). Recently, it has been shown that simulations of models that have been integrated over a few centuries

are not yet in equilibrium, and from longer climate simulations a higher ECS can be deduced (Knutti et al., 2017). Another way10

to express equilibrium climate sensitivity, is by taking the ratio of the temperature change over the radiative forcing due to the

CO2 change (∆R[CO2]), leading to Sa (where a stands for actuo) following the notation of PALAEOSENS Project Members

(2012):

Sa =
∆T[CO2]

∆R[CO2]
. (1)

The subscript denotes that CO2 is the only long-term process involved. Analogously, paleoclimate sensitivity (Sp) can be

deduced from paleo-temperature reconstructions and paleo-CO2 records as15

Sp =
∆Tg

∆R[CO2]
. (2)

In this case, the global paleotemperature anomaly with respect to the pre-industrial (PI) average (∆Tg) is, however, also

affected by the long-term processes that are typically neglected in the climate simulations. Therefore, a correction to the

paleotemperature perturbation is needed to obtain ∆T[CO2] from ∆Tg:

∆T[CO2] = ∆Tg(1− f), (3)

or equivalently Sa from Sp:

Sa = Sp(1− f) =
∆Tg

∆R[CO2]
(1− f). (4)

Here, f represents the effect of the slow feedbacks on paleotemperature (e.g. van de Wal et al., 2011). To obtain f , PALAEOSENS20

Project Members (2012) proposed an approach, which has subsequently been used in numerous studies aiming to constrain

climate sensitivity from paleodata (e.g. von der Heydt et al., 2014; Martínez-Botí et al., 2015; Köhler et al., 2015, 2017b, 2018;

Friedrich et al., 2016). They suggested to quantify the influence of the long-term processes (X) by the radiative forcing change

they induce (∆R[X]), relative to the total radiative forcing perturbation:

f =
∆R[X]

∆R[CO2] + ∆R[X]
= 1− ∆R[CO2]

∆R[CO2] + ∆R[X]
(5)
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Combining Eqs. 4 and 5 and following the PALAEOSENS nomenclature, we can then derive the ’specific’ paleoclimate sensi-

tivity S[CO2,X], where X represents the processes that are accounted for in the calculation of f :

S[CO2,X] =
∆Tg

∆R[CO2]
(1− ∆R[X]

∆R[CO2] + ∆R[X]
) =

∆Tg

∆R[CO2] + ∆R[X]
=

∆Tg

∆R[CO2,X]
. (6)

If, for instance, the calculated specific paleoclimate sensitivity is only corrected for the most important slow feedback in the

climate system, namely radiative forcing anomalies induced by albedo changes due to land ice (LI) variability, one derives:

S[CO2,LI] =
∆Tg

∆R[CO2] + ∆R[LI]
=

∆Tg

∆R[CO2,LI]
. (7)

An overview of different values of S[CO2,LI] for both colder- and warmer-than-present climates has been compiled by von der5

Heydt et al. (2016). Using this approach, several studies performed a least-squares regression through scattered data from

paleotemperature and radiative forcing records (Martínez-Botí et al., 2015; Friedrich et al., 2016; Köhler et al., 2015, 2017b,

2018) relating ∆Tg to ∆R[CO2,LI] in a time-independent manner, from which S[CO2,LI] could be determined. In this way, a

state dependency of S[CO2,LI] as function of background climate has been deduced for those data which are best approximated

by a non-linear function. Furthermore, the quantification of S[CO2,LI] for those state-dependent cases has been formalized in10

Köhler et al. (2017b).

The validity of the PALAEOSENS approach to calculate f is contingent on the notion that equal global-average radiative

forcing changes lead to equal global temperature responses, regardless of the processes involved. However, it has been demon-

strated that the horizontal and vertical distribution of the radiative forcing affects the resulting temperature response (e.g. Stuber

et al., 2005; Hansen et al., 2005; Yoshimori et al., 2011; Stap et al., 2018), e.g. because different fast feedbacks are triggered15

depending on the location of the forcing. To address this issue, Hansen et al. (2005) introduced the concept of ’efficacy’ factors,

which we will explore further in this study. They related the temperature response to radiative forcing caused by processes X

to that caused by CO2 changes, through efficacy factors (ε[X]), which demands a reformulation of f as fε:

fε =
ε[X]∆R[X]

∆R[CO2] + ε[X]∆R[X]
= 1− ∆R[CO2]

∆R[CO2] + ε[X]∆R[X]
, (8)

and hence also of S[CO2,X] as Sε
[CO2,X]:

Sε
[CO2,X] =

∆Tg

∆R[CO2] + ε[X]∆R[X]
. (9)

In these reformulations, where in principal ε[X] can take any value, we introduce the superscript ε to clearly distinguish them20

from the former ones of the PALAEOSENS project, in which the radiative forcing of the different processes had identical

weights.

In the following, likewise as several earlier studies (e.g. von der Heydt et al., 2014; Martínez-Botí et al., 2015; Köhler et al.,

2015, 2017b, 2018) we focus on the calculation of Sε
[CO2,LI]. To this end, we constrain the efficacy factor for radiative forcing

by land ice changes (ε[LI]), using a slightly different definition than Hansen et al. (2005):25

∆T[LI]

∆R[LI]
= ε[LI]

∆Tg−∆T[LI]

∆R[CO2]
. (10)
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This leads to:

ε[LI] =
ω

1−ω
∆R[CO2]

∆R[LI]
, (11)

where ω represents the fractional relative influence of land ice changes on the global temperature change (ω = ∆T[LI]/∆Tg).

If ε[LI] is assumed to be constant in time (see Sect. 3.1 and 4), it can be calculated using Eq. 11 from data covering any

moment in time, for instance the Last Glacial Maximum (LGM), and consequently applied to the whole record of ∆R[CO2]

and ∆R[LI]. Similarly as in the old approach, with this ε[LI] a quantification of Sε
[CO2,LI] can be obtained by performing5

a least-squares regression through scattered data from paleotemperature and radiative forcing records, now relating ∆Tg to

(∆R[CO2] + ε[LI]∆R[LI]) in a time-independent manner. However, here we take a further simplifying step, which enables one

to more readily compare Sε
[CO2,LI] to other specific paleoclimate sensitivities Sε

[CO2,X] by unifying the dependent variable. We

consider:

Sε
[CO2,LI] =

∆Tg

∆R[CO2] + ε[LI]∆R[LI]
=

∆Tg

∆R[CO2]

∆R[CO2]

∆R[CO2] + ε[LI]∆R[LI]
=

∆T ε
[CO2−equiv]

∆R[CO2]
. (12)

Here, the CO2-equivalent temperature change (∆T ε
[CO2−equiv]) is defined as:10

∆T ε
[CO2−equiv] := ∆Tg

∆R[CO2]

∆R[CO2] + ε[LI]∆R[LI]
. (13)

The superscript ε in ∆T ε
[CO2−equiv] is intended to remind us that the efficacy of different radiative forcing is taken into account.

A functional relationship between ∆T ε
[CO2−equiv] and ∆R[CO2] (∆T ε

[CO2−equiv] = g(∆R[CO2])) can be obtained by least-

squares regressions of higher-order polynomial to the scattered data of these variables. We use the precondition that no change

in CO2 is related to no change in ∆T ε
[CO2−equiv], meaning the regression intersects the y-axis at the origin ((x,y) = (0,0)).

Following Köhler et al. (2017b), for any non-zero ∆R[CO2], Sε
[CO2,LI] follows from:15

Sε
[CO2,LI] =

g(∆R[CO2])
∆R[CO2]

. (14)

If ∆R[CO2] = 0Wm−2, as is among others the case for pre-industrial conditions, Sε
[CO2,LI] is quantified as:

Sε
[CO2,LI]

∣∣∣∣
∆R[CO2]=0

=
δ(g)

δ(∆R[CO2])

∣∣∣∣
∆R[CO2]=0

. (15)

Equations 14 and 15 yield a quantification of Sε
[CO2,LI], which can be compared to the value obtained for S[CO2,LI] using the

old approach (Köhler et al., 2018).

2.2 Datasets

2.2.1 CLIMBER-2 model simulations20

To demonstrate our approach, we apply it to simulations over the past 5 Myr, which were performed using the intermedi-

ate complexity climate model CLIMBER-2 (Petoukhov et al., 2000; Ganopolski et al., 2001). CLIMBER-2 combines a 2.5
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statistical-dynamical atmosphere model, with a 3-basin zonally averaged ocean model (Stocker et al., 1992), and a model that

calculates dynamic vegetation cover based on the temperature and precipitation (Brovkin et al., 1997). The simulations were

extensively described in Stap et al. (2018). In brief, they are forced by solar insolation which changes due to orbital (O) vari-

ations (Laskar et al., 2004), and further by land ice (I) changes on both hemispheres (based on de Boer et al., 2013), and CO2

(C) changes (based on van de Wal et al., 2011). In the reference experiment (OIC) all input data are varied, while in other model5

integrations the land ice (experiment OC) or the CO2 concentration (experiment OI) is kept fixed at PI level. The synergy of

land ice and CO2 changes is negligibly small, meaning their induced temperature changes add approximately linearly when

both forcings are applied. Likewise as in Stap et al. (2018), we use the simple energy balance model of Köhler et al. (2010)

to analyse the applied radiative forcing of land ice albedo and CO2 changes and simulated global temperature changes, after

averaging to 1,000 year temporal resolution (Fig. 1a,b).10

2.2.2 Proxy-inferred paleoclimate dataset

To compare our new approach for Sε
[CO2,LI] to our previous quantification of S[CO2,LI] (Köhler et al., 2018), we reanalyse the

same paleoclimate dataset (introduced in Köhler et al., 2015), which contains reconstructions of ∆Tg, ∆R[CO2], and ∆R[LI].

Although this dataset covers the past 5 Myr, we focus on the past 800 kyr (Fig. 1c,d) because over this period ∆R[CO2] is

constrained by high-fidelity ice core CO2 data, whereas Pliocene and Early Pleistocene CO2 levels are still heavily debated15

(e.g. Badger et al., 2013; Martínez-Botí et al., 2015; Willeit et al., 2015; Stap et al., 2016, 2017; Chalk et al., 2017). Radiative

forcing by CO2 is obtained from Antarctic ice core data compiled by Bereiter et al. (2015), using ∆R[CO2] = 5.35Wm−2 ·
ln(CO2/(278ppm)) (Myhre et al., 1998). Revised formulations of ∆R[CO2] following Etminan et al. (2016) lead to very

similar results with less than 0.01 Wm−2 differences between the approaches for typical late Pleistocene CO2 values (Köhler

et al., 2017a). Radiative forcing caused by land ice albedo changes, as well as the global surface air temperature record (∆Tg),20

are based on results of the 3D ice-sheet model ANICE (de Boer et al., 2014). ANICE was forced by northern hemispheric

temperatures obtained from a benthic δ18O stack (Lisiecki and Raymo, 2005) using an inverse technique. This provided

geographically specific land ice distributions, and hence radiative forcing due to albedo changes with respect to PI on both

hemispheres. In Köhler et al. (2015), the northern hemispheric (NH) temperature anomalies (∆TNH) are translated into global

temperature perturbations using polar amplification factors (fPA = ∆TNH/∆Tg) as follows: at the LGM, fPA = 2.7 is taken25

from the average of PMIP3 model data (Braconnot et al., 2012), while at the mid-Pliocene Warm Period (mPWP, about 3.2 Myr

ago), fPA = 1.6 is calculated from the average of PlioMIP results (Haywood et al., 2013). At all other times, fPA is linearly

varied as a function of NH temperature. The temperature dynamics follow from a benthic δ18O stack and are unconstrained

by climatic boundary conditions such as insolation and greenhouse gases, since ANICE only simulates land ice dynamics.

Therefore, these results are here considered to be more similar to those of proxy-based reconstructions than of climate-model-30

based simulations. The temporal resolution of the dataset is 2,000 years.

Analysing this dataset, Köhler et al. (2018) found a temperature-CO2 divergence appearing mainly during, or in connection

with, periods of decreasing obliquity related to land ice growth or sea level fall. For these periods, a significantly different

S[CO2,LI] was obtained than for the remainder of the time frame. However, in the future we expect sea level to rise, hence these
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intervals of strong temperature-CO2 divergence should not be considered for the interpretation of paleodata in the context of

future warming, e.g. by using paleodata to constrain ECS. In the following analysis, we therefore exclude these times with

strong temperature-CO2 divergence, leaving 217 data points.

3 Results and Discussion

In this section, we will first demonstrate our new approach using a model-based dataset covering the past 5 Myr (Sect. 3.1),5

where the influence of land ice changes on the climate is a-priori known (Fig. 1a,b). Thereafter, we will apply it to a proxy-

based reconstruction of paleoclimate of the past 800 kyr (Fig. 1c,d). We will base the efficacy of land ice changes on the

relative influence this process has on the LGM temperature anomaly, as obtained from a range provided by a recent compilation

(Shakun, 2017) (Sect. 3.2) and from analysing PMIP3 model results (Braconnot et al., 2012) (Sect. 3.3).

3.1 Demonstration of the approach using model simulations10

CLIMBER-2 experiment OC, in which land ice is kept constant, approximately yields the sole effect of CO2 changes on

global temperature (∆T[OC]) since the influence of orbital variations is very small (Stap et al., 2018). We use a least-squares

regression through scattered data of ∆R[CO2] and ∆T[OC] to fit a second order polynomial (Fig. 2a). Using a higher order

polynomial rather than a linear function allows us to capture state dependency of paleoclimate sensitivity. Fitting even higher

order polynomials leads to negligible coefficients for the higher powers, and is not pursued further. From the fit, we calculate15

a specific paleoclimate sensitivity Sε
[CO2,LI] - in this case equal to Sε

[CO2] as there are no land ice changes - of 0.74 KW−1 m2

for PI conditions (∆R[CO2] = 0 Wm−2) using Eq. 15. The fit further shows decreasing Sε
[CO2,LI] for rising ∆R[CO2].

Our approach of compensating paleoclimate sensitivity for slow processes other than CO2 changes, aims to deduce the

same Sε
[CO2,LI] from experiment OIC in which both CO2 and land ice cover vary over time as for experiment OC. First, we

calculate the efficacy of land ice changes for the LGM from experiment OI, in which the CO2 concentration is kept constant,20

and obtain ω = ∆T[LI]/∆Tg = ∆T[OI]/∆T[OIC] = 0.54. Consequently, we find ε[LI] = 0.58 from Eq. 11. Next, we calculate

∆T ε
[CO2−equiv] using Eq. 13, and again fit a second order polynomial to the scattered data of ∆T ε

[CO2−equiv] and ∆R[CO2]

(Fig. 2b). Between ∆R[CO2] =−0.5Wm−2 and ∆R[CO2] = 0.5Wm−2 there are some outlying values caused by division

of small numbers. To remove these outliers, we first calculate the root mean square error (RMSE) between the fit and the

data in the remainder of the domain. Then, we exclude all 144 values from the range ∆R[CO2] =−0.5Wm−2 to ∆R[CO2] =25

0.5Wm−2 where the fit differs from the data by more than 3 × RMSE, and perform the regression again. This yields an

Sε
[CO2,LI] of 0.72 KW−1 m2 for PI (Fig. 2b), which supports our approach since it is only slightly lower than the S[CO2,LI] of

0.74 KW−1 m2 obtained from experiment OC, which it should approximate. Here, the relationship between ∆T ε
[CO2−equiv]

and ∆R[CO2] (Fig. 2b) is more linear than that of ∆T[OC] and ∆R[CO2] (Fig. 2a) suggesting that the corresponding S[CO2,LI]

increases more towards colder climates than in experiment OC, possibly indicating a non-constant ε[LI]. However, the difference30

between the Sε
[CO2,LI] obtained from both experiments remains smaller than 0.07 KW−1 m2 in the simulated domain. In
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any case, the new approach considering efficacies clearly leads to a more satisfactory result than the old approach, which is

equivalent to using ε[LI] = 1, and would give a PI S[CO2,LI] of 0.54 KW−1 m2 (Fig. 2c).

3.2 Application to proxy-inferred paleoclimate data

We proceed to apply our approach to a paleoclimate dataset inferred from proxies (Köhler et al., 2015). Other than for climate

model simulations, the influence of land ice changes on global temperature perturbations cannot be directly obtained from5

proxy-based datasets, and is hence a-priori unknown. We therefore consider the study of Shakun (2017), who compiled this

influence for the LGM using a 12-member climate model ensemble. He found a range of 46± 14% (mean ±1σ, full range

20− 68%) for the simulated relative impact of land ice changes on the LGM temperature anomaly. Using these numbers in

Eq. 11 yields ε[LI] = 0.49+0.37
−0.22, from which we calculate ∆T ε

[CO2−equiv] for the whole 800-kyr period. Fitting second order

polynomials by least-squares regression to the scattered data of ∆T ε
[CO2−equiv] and ∆R[CO2] again, we infer a PI Sε

[CO2,LI]10

of 2.37+0.55
−0.56 KW−1 m2 (Fig. 3a). The substantial uncertainty given here only reflects the 1σ uncertainty in ε[LI]. Similarly as

before (Köhler et al., 2018), we detect a state dependency with decreasing Sε
[CO2,LI] towards colder climates for this dataset,

more strongly so in case of lower ε[LI]. A discussion of this state-dependency of paleoclimate sensitivity, which is opposite

to the one found in the previous section, is not followed any further here, but it has been analyzed in-depth in a previous

publication (Köhler et al., 2018). At ∆R[CO2] = 2.04Wm−2, the LGM value (here taken as the mean of 20 and 22 kyr ago),15

Sε
[CO2,LI] is only 1.39+0.35

−0.36 KW−1 m2. The specific paleoclimate sensitivities we find here are generally higher than calculated

by the old approach (ε[LI] = 1), which, for instance, for PI yields a S[CO2,LI] of 1.66 KW−1 m2 (Fig. 3b). This is because

using this range for the impact of land ice changes on the LGM temperature anomaly, the efficacy factor ε[LI] is smaller than

unity. That means that these land ice changes contribute per unit radiative forcing comparatively less to the global temperature

anomalies than the CO2 changes.20

To compare our inferred Sε
[CO2,LI] to the ECS calculated by climate models, we scale them by a factor of 0.64 that accounts

for the influence of other long-term processes, namely vegetation, aerosol and non-CO2 GHG changes (PALAEOSENS Project

Members, 2012). Note that this scaling still assumes unit efficacy for all other processes than land ice changes. Therefore, it is a

source of uncertainty to be investigated in future research. After multiplying by 3.7 W−1 m2, the radiative forcing perturbation

representing a CO2 doubling (Myhre et al., 1998), we obtain an equivalent ECS of 5.6± 1.3K per CO2 doubling. This is on25

the high end of the results of other approaches to obtain ECS (Knutti et al., 2017), e.g. the 2.0 to 4.3 K 95%-confidence range

from a large model ensemble (Goodwin et al., 2018), and the 2.2 to 3.4 K 66% confidence range from an emerging constraint

from global temperature variability and CMIP5 (Cox et al., 2018). The efficacy of land ice changes has to be stronger (larger

ε[LI]) than what we calculate so far from Shakun (2017) to achieve a smaller ECS and therefore a better agreement with these

other estimates.30

3.3 Further analysis of the influence of land ice changes on the LGM climate

In the previous section, we showed that the uncertain influence of land ice changes on the LGM temperature anomaly has a

large effect on the calculated climate sensitivity. Here, we will make a complementary assessment of this influence of land ice
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changes by analysing data from the PMIP3 model intercomparison project (Braconnot et al., 2012).

The PMIP3 ensemble consists of 9 general circulation models (Table 1). We investigate the intermodel relation between

global average and northern high-latitude temperature changes at the LGM with respect to PI, caused by all long-term pro-

cesses other than CO2 changes. Taking this approach, we presume that these other processes, in particular land ice changes,

lead to stronger polar amplification of temperature anomalies than CO2 changes. For the temperature changes (∆Tg and5

∆TNH) we use the PMIP3 data from the LGM runs from which we subtract the reference PI results. We use the 40◦ to 85◦

N mean to represent the northern high latitudes (NH), which is roughly the area where ice sheets grow. Currently, the PMIP3

simulation set does not comprise separate LGM runs using only CO2 forcing. Therefore, we use the ECS values as published

in Forster et al. (2013) and Haywood et al. (2013) to calculate the influence of CO2 on temperature (∆T[CO2]) for all PMIP3

models. By using the same equation as before for the CO2 greenhouse gas radiative forcing (Myhre et al., 1998), we find that10

ratio of ∆R[CO2] between LGM (185 ppm CO2) and PI (280 ppm CO2), and PI and 2×CO2 is ln(185/280)/ln(2) =−0.6

in the PMIP3 experiments. We correct the induced ∆T[CO2] of all individual models for this ratio. In our analysis, we presume

that the influence of CO2 changes is spatially uniform as is approximately the case in the CLIMBER-2 simulations (Stap et al.,

2018).

We regress a least-squares linear fit between (∆Tg−∆T[CO2]) and (∆TNH−∆T[CO2]), providing us with a functional rela-15

tion between these variables (Fig. 4). This relation is significant on the 95% level, but subject to large uncertainties. The RMSE

between the data and the derived relation is 1.64 K (Fig. 4; cyan). This implies a substantial uncertainty of 29% in the influence

of CO2 on temperature, similar to the full range shown by the model ensemble in Shakun (2017). The relation is furthermore

strongly dependent on the models CNRM-CM5 and GISS-E2-R that produce the smallest and the largest temperature anoma-

lies respectively. Conversely, MIROC-ESM and MRI-CGCM3 constitute the largest outliers in the relation. Removing these20

models would nearly halve the RMSE between the data and the derived relation to 0.88 K. Lastly, relating the LGM temperature

anomalies directly to the ECS obtained from 2×CO2 experiments is possibly problematic (Crucifix, 2006). Hence, confidence

in the induced relation would be greatly increased if: i) more models participated in the PMIP intercomparison project, and ii)

separate LGM runs using only CO2 forcing were executed within this framework.

Notwithstanding these considerations, we will apply the relation between ∆Tg, ∆TNH, and ∆TCO2 to our paleoclimate25

dataset (Sect. 2.2.2) (Köhler et al., 2015). In this dataset, the global average LGM temperature perturbation is -5.7 K. This is

obtained from a northern high-latitude temperature perturbation of -15.5 K. However, this high-latitude anomaly represents the

surface air temperature over the land masses only, for which the perturbation is ∼ 13% stronger than for the whole region in-

cluding the ocean, as deduced from the PMIP3 data. We therefore infer a mean perturbation of -13.8 K for the whole 40◦ to 85◦

N region. Applying the relation we found earlier to our dataset, we infer a ∆T[CO2] of -1.3 K (Fig. 4; yellow star). This gives us30

an (assumed) relative influence of CO2 on global temperature of 0.23 (∆T[CO2]/∆Tg =−1.3 K/− 5.7 K). Next, we account

for the influence of changes in non-CO2 greenhouse gases, vegetation and aerosol changes by multiplying this influence by

1.57 (PALAEOSENS Project Members, 2012), leading to a total influence of 36%. The remaining 64% can be attributed to

the influence of land ice changes. This is on the high side of the full 20 to 68% range shown in Shakun (2017), which would

contradict the limited influence of land ice changes advocated by that same study based on analysis of Late Pliocene and Early35
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Pleistocene data.

The comparatively large inferred influence of ice sheet changes in our dataset can be explained by the relatively strong

northern hemispheric temperature perturbation (-15.5 K) in combination with the PMIP3 average polar amplification factor

2.7 (Sect. 2.2.2). Using a slightly lower factor of 2.6, ∆T[CO2] would be -1.8 K, and the relative influence of ice sheet changes

would decrease to 53%, which underlines the importance of correctly capturing polar amplification for constraining climate5

sensitivity. Using climate model output, the relative contributions of the land ice sheet change, CO2 change, and circulation

on regional and global temperature can be calculated. For instance, Romanova et al. (2006) showed that changes in ice sheet

height and ocean heat transport can significantly affect the tropical and high-latitude temperature response. A logical next step

would be the analysis of the feedback mechanisms in a comprehensive model set-up, which is beyond the scope of the present

paper.10

Using Eq. 11 with the obtained ω = 0.64 and the LGM values of our dataset, we calculate an ε[LI] of 1.06. As ε[LI] > 1, the

efficacy of land ice changes is larger than that of CO2 changes in this case. The corresponding PI Sε
[CO2,LI] is 1.61 KW−1 m2

(Fig. 3d), equivalent to an ECS of 3.8 K per CO2 doubling.

4 Conclusions

We have incorporated the concept of a time-constant efficacy factor (Hansen et al., 2005), that interrelates the global temper-15

ature responses to radiative forcing caused by land ice changes and CO2 changes, into our framework of calculating specific

paleoclimate sensitivity Sε
[CO2,LI]. The aim of this effort has been to overcome the problem that land ice and CO2 changes can

lead to significantly different global temperature responses, even when they induce the same global-average radiative forcing.

Firstly, we have shown the importance of considering efficacy differences by applying our new approach to results of 5-Myr

CLIMBER-2 simulations (Stap et al., 2018), where the separate effects of land ice changes and CO2 changes can be isolated.20

In future research, the assumption that the efficacy factor is indeed constant in time could be tested more rigorously using more

sophisticated climate models. Thereafter, we have used our new approach to reanalyse a 800-kyr proxy-inferred paleoclimate

dataset (Köhler et al., 2015). We have implemented a range in the land ice change efficacy factor ε[LI] based on the 46± 14%

(mean±1σ) impact of land ice changes on the LGM temperature anomaly simulated by a 12-member climate model ensemble

(Shakun, 2017). We infer large uncertainty in the calculated PI Sε
[CO2,LI] of 2.37+0.55

−0.56 KW−1 m2 caused by the implemented25

range in the efficacy factor ε[CO2,LI] which has a non-linear effect. The equivalent ECS corresponding to this Sε
[CO2,LI] is

5.6± 1.3K per CO2 doubling, only the lower end of which can be reconciled with estimates from other approaches. As this

lower end tallies with higher values of ε[CO2,LI], our result suggests a large effect of land ice changes on global temperature

anomalies. This finding is corroborated by a separate assessment of the influence of land ice changes on the LGM temperature

anomaly and the corresponding efficacy ε[CO2,LI] based on PMIP3 data. Using this data, we have derived a functional relation30

between global and high-latitude temperature changes at the LGM with respect to the pre-industrial simulation (PI), and the

temperature change caused by a change in CO2. By applying this relation to our proxy-inferred dataset, we have deduced a

CO2-induced temperature change at LGM of -1.3 K. This result is, however, subject to substantial uncertainty stemming from
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the derived functional relation and the polar amplification factor used in our dataset. Following from this CO2-induced tem-

perature change, the influence of land ice changes on the LGM temperature anomaly is 64%, even higher than the range used

before but within the full 20 to 68% range shown in Shakun (2017). The associated PI Sε
[CO2,LI] in this case is 1.61 KW−1 m2,

equivalent to an ECS of 3.8 K per CO2 doubling.
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Table 1. The PMIP3 models used here, along with their published equilibrium climate sensitivity (ECS), the LGM temperature anomaly

caused only by CO2 changes (∆T[CO2]) inferred from the ECS, and the global and northern hemispheric (40-85◦ N) temperature anomalies

at the LGM with respect to their PI reference (∆Tg, ∆TNH).

Model published ECS Inferred LGM LGM LGM

(K per CO2-doubling) ∆T[CO2] (K) ∆Tg (K) ∆TNH (K)

CCSM 2.9 -1.82 -4.91 -11.2

CNRM-CM5 3.3 -2.07 -2.62 -6.29

COSMOS-ASO 4.1 -2.58 -5.46 -11.2

FGOALS-g2 4.2 -2.64 -4.73 -11.6

GISS-E2-R 2.1 -1.32 -5.07 -14.0

IPSL-CM5A-LR 4.1 -2.58 -4.60 -10.0

MIROC-ESM 4.7 -2.95 -5.00 -14.4

MPI-ESM-P 3.5 -2.20 -4.41 -10.4

MRI-GCSM3 2.6 -1.63 -4.68 -8.89
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Figure 1. Timeseries of radiative forcing anomalies (∆R) caused by CO2 (red) changes and land ice changes (blue), and global temperature

anomalies (∆Tg) with respect to PI, from a-b) the CLIMBER-2 model dataset (Stap et al., 2018), with temperature data for experiment OIC

in black and for experiment OC in green, and from c-d) the proxy-inferred dataset (Köhler et al., 2015), with solid lines for the whole dataset,

and dots for the data used in this study which exclude times with strong temperature-CO2 divergence (see Sect. 2.2.2). Note the differing

axis scales.
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Figure 2. Temperature anomalies with respect to PI over the last 5 Myr from CLIMBER-2 (Stap et al., 2018) against imposed radiative forcing

of CO2. a) Simulation with fixed PI land ice distribution (experiment OC) (∆T[OC]). b) Calculated CO2-equivalent temperature perturbations

(∆T ε
[CO2−equiv]) from experiment OIC using Eq. 13 with ε[LI] = 0.58. c) Same as in (b), but with ε[LI] = 1, which is equivalent to the old

approach where efficacy differences were not considered. The red lines represent second order polynomial least-squares regressions through

the scattered data.
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Figure 3. The CO2-equivalent temperature perturbations (∆T ε
[CO2−equiv]) calculated using Eq. 13 against ∆R[CO2] from the proxy-inferred

paleoclimate dataset (Köhler et al., 2015), using: a) ε[LI] = 0.86 (maroon dots), ε[LI] = 0.49 (cyan dots), and ε[LI] = 0.27 (green dots), and

b) ε[LI] = 1 (grey dots), which is equivalent to the old approach, and ε[LI] = 1.06 (yellow dots). The brown, blue, dark green (a), black and

orange lines (b) represent second order polynomial least-squares regressions through the data.
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y = 1.877x – 4.162

Figure 4. The Northern Hemisphere LGM temperature anomaly (∆TNH) minus the temperature anomaly caused only by CO2 changes

(∆T[CO2]) inferred from the ECS, against the global LGM temperature anomaly (∆Tg) minus ∆T[CO2], for the models in the PMIP3

ensemble (red dots). The blue line is the regressed linear intermodel relation between these quantities. In cyan, the 1.64 K uncertainty

determined from the root mean square difference between the data and the fit. The yellow star represents the values for ∆TNH, ∆Tg, and

∆T[CO2] deduced by applying the fit to the proxy-inferred paleoclimate dataset (Köhler et al., 2015), hence by construction being on the

fitted line.
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